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Abstract

The natural frequencies and mode shapes of planar shear undeformable beams around their curved pre-
stressed post-buckling configurations are investigated neglecting rotary inertia effects. Two mechanical
models are considered depending on the assumed boundary conditions in the buckling and post-buckling
phases. With the first model, the beam is considered inextensible because it is hinged at one end and is acted
upon by an axial compressive force on the other end, a sliding hinge. In the second case, the beam is
assumed inextensible in the pre-stressed phase (same boundary conditions as above), whereas it is extensible
in the subsequent free linear dynamic phase because the sliding hinged boundary is changed into a
stationary hinged end. Linear vibrations are governed by partial-differential equations with non-constant
coefficients and the solutions for the frequencies and mode shapes are found employing two approximate
approaches: a fully numerical method based on a finite element formulation and a semi-analytical method
based on a weak formulation (Galerkin method). The main results are compared and a close agreement in
the outcomes is found. The leading mechanical differences in the linear normal modes of the two pre-
stressed curved beam models are discussed.
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see front matter r 2004 Elsevier Ltd. All rights reserved.

jsv.2004.07.021

ding author. Tel.: +39 6 44 585 293; fax: +39 6 488 4852.

ress: walter.lacarbonara@uniroma1.it (W. Lacarbonara).

www.elsevier.com/locate/jsvi


ARTICLE IN PRESS

D. Addessi et al. / Journal of Sound and Vibration 284 (2005) 1075–10971076
1. Introduction

Linear vibrations of planar curved beams, arches and rings have been the subject of numerous
studies due to their extensive use in a wide variety of engineering applications such as bridges, aircraft
structures, and turbo-machinery blades. These structures are modelled as either extensional (including
the extension of the neutral axis) or inextensional Euler–Bernoulli and Timoshenko curved beams.
Literature reviews on vibrations of curved beams, rings and arches are found in Refs. [1,2].

Several methods have been employed to study free vibrations of curved beams. Den Hartog [3]
obtained the natural frequencies of circular arches with fixed and hinged boundary conditions
using the Rayleigh–Ritz method. On the other hand, Rao and Sundararajan [4] and Tufekci and
Arpaci [5] solved the equations of motion governing in-plane vibrations with classical boundary
conditions. Chidamparam and Leissa [6] used the Galerkin method to study in-plane free
vibrations of extensional and inextensional loaded circular arches. Mau and Williams [7] solved
the arch vibration problem using the Green function.

Numerous studies have developed beam finite elements for both Timoshenko and
Euler–Bernoulli curved beam models, among them, the works of Petyt and Fleischer [8], Prathap
[9], and Yang and Sin [10]. Grosh and Pinsky [11] implemented the Galerkin generalized least-
squares method to solve for the steady-state responses of Timoshenko beams and arches.

Kang et al. [12] used the differential quadrature method to compute the eigenvalues of the
equations of motion governing free in-plane vibrations, including extensibility of the arch axis and
the coupled out-of-plane twist-bending vibrations of circular arches. In-plane buckling and twist-
buckling under uniformly distributed radial loads were also investigated for clamped and simply
supported boundary conditions. They found a good agreement with the results obtained with
other methods using a limited number of grid points.

Matsunaga [13] employed the method of power series expansion of the displacement
components and Hamilton’s principle to derive a set of equations of motion of a one-dimensional
higher-order theory for in-plane vibrations of shallow circular arches. He analyzed the natural
frequencies and buckling loads of a simply supported shallow arch subjected to axial compressive
forces, accounting also for shear deformations and rotary inertia.

Oh et al. [14] derived the differential equations governing free in-plane vibrations of non-
circular arches with non-uniform cross sections and solved them numerically to obtain the
frequencies and mode shapes. Numerical results were presented for the quadratic, parabolic,
catenary and elliptic arches with hinged–hinged, hinged–clamped, and clamped–clamped
boundary conditions and for three general taper-type rectangular sections. They also presented
experimental measurements of the natural frequencies and mode shapes and showed a close
agreement with those predicted by the theory.

Perkins [15] examined the planar, linear vibrations of a simply supported non-shallow arch
formed of a rod that buckles nonlinearly under the action of a compressive end load. He
employed the geometrically nonlinear rod theory to describe the planar bending of the rod.
Subsequent to buckling, he considered stationary hinged ends. He used a variational formulation
to solve the eigenvalue problem for the natural frequencies and mode shapes of vibration around
an elastica equilibrium. The stationary hinges allowed to use the sine series as admissible
functions. He found good agreement with the experimental results relating to the lowest two
frequencies and mode shapes.
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A large number of works has dealt with shallow pre-stressed arch models using the approximate
theory due to Mettler [16]. In Mettler’s theory, the arch bending curvature is linear, whereas the
centerline stretching is nonlinearly related to the transverse deflection and a condensation
procedure is used to obtain the governing equation of motion in the transverse direction. This
theory has been used to model also buckled beams, although restricted to shallow post-buckling
configurations. Both the linear [17] and nonlinear [18] vibration regimes of buckled beams have
been investigated analytically and experimentally, with an overall good agreement between theory
and experiments.

It is worth noting that Mettler’s shallow arch theory is applicable only to beams and arches that
are statically indeterminate in the longitudinal direction, such as hinged–hinged or fixed–fixed
beams. Nonetheless, there is a clear theoretical as well as a practical interest for investigating
different boundary conditions and non-shallow pre-stressed configurations with the appropriate
mechanical formulation. On a merely theoretical ground, it is well known that the post-buckling
problem of the Euler rod plays the role of a mechanical paradigm for static and dynamical critical
and post-critical scenarios [19]. It has also been shown experimentally that a wealth of nonlinear
phenomena occurs in systems such as simply supported beams in their non-shallow post-buckling
regimes [20].

From a practical point of view, there are at least three areas of engineering interest: (i) vibration
isolation, (ii) mechanical actuation and (iii) aircraft design. In the field of vibration isolation, the
concept is to interject, between the primary structure and the excitation source, a buckled
mechanism possessing a low fundamental frequency right above buckling [21,22].

Further, the fact that small longitudinal displacements of the boundary of a buckled beam
cause large rotations of the end section makes a buckled beam or structure an effective mechanical
amplifier, hence, a rotary actuator [23]. Finally, in current aircraft industry the major challenge is
to design light-weight structural components that can accordingly be allowed to buckle under
some loading conditions. Hence, it is critical to predict with high accuracy their static and
dynamic post-buckling behavior.

To describe the dynamics of generally constrained non-shallow pre-stressed elastica systems, a
geometrically exact approach has been employed in Ref. [24]. In the present paper, the
linearization of the governing equations is performed and two leading mechanical models are
constructed, namely, the Kirchhoff and Euler–Bernoulli rods. Further, for each mechanical
model, both finite element and semi-analytical approaches are used. The objective is to study the
sensitivity of the modal properties in the vicinity of the first buckling Euler load. For both models,
appropriate admissible functions are used in the weak formulation based on Galerkin’s method
[25] in order to obtain the natural frequencies and mode shapes. More specifically, the motivation
for constructing closed-form expressions for the mode shapes is connected with the need of a basis
for analytically studying the nonlinear post-critical responses to external resonant excitations both
for auto-parametric and non-auto-parametric conditions.
2. Problem formulation and computational schemes

In this section, the mechanical models describing the free vibration problem of pre-stressed
planar curved beams with different post-buckling boundary conditions are illustrated. The beams,
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made of a homogeneous isotropic and hyper-elastic material and naturally resting with an initial
simply supported configuration, are subjected to a longitudinal end load monotonically increasing
beyond the first critical Eulerian value; subsequently, the post-buckling free linear dynamical
behavior is analyzed. In particular, two post-buckling configurations are investigated: the simply
supported configuration—same boundary conditions as in the buckling phase—and the
hinged–hinged configuration whereby the right sliding hinge is turned into a stationary [15]
hinged end.

The extended theoretical formulation of the exact mechanical model for nonlinear planar
motions around non-shallow pre-stressed states is discussed in Ref. [24]. The Kirchhoff’s
hypotheses of inextensibility and unshearability are assumed during the static pre-buckling
deformation process. This assumption is well established in the literature for slender rods [19]; in
fact, it can be shown that the effect of shear deformations on the overall elastic deformation
process is negligible. At the same time, when the beam is statically determinate in the axial
direction, axial deformations can be neglected with respect to bending deformations for typical
material properties and loading conditions. Hence, during the small-amplitude post-buckling
motions, Kirchhoff’s hypotheses hold for the simply supported configuration, whereas the
inextensibility assumption is removed for the hinged–hinged case.

The pre-stressed equilibrium state C0 (Fig. 1), described by the displacement vector u0; with
respect to the straight undeformed beam axis Cn is adopted as initial reference configuration for
the motions around it, whereby the beam section position is described by the coordinate x
measured along Cn: Hence, the elastodynamic problem is parameterized by x 2 ½0; ‘� (‘ is the
length of the undeformed beam) and the planar dynamic configuration C is described by the
vector u whose components, in the local basis, are ðu; vÞ (Fig. 1).

Denoting with t0ðxÞ and m0ðxÞ the resultant contact force and contact couple, respectively,
acting between two adjoining material sections originally located at x in the reference
configuration, the balance of linear momentum and angular momentum in the pre-stressed
configuration can be expressed as

t00 þ b0 ¼ 0; m0
0 þ x00 	 t0 ¼ 0; (1)

where x0 is the position vector of the beam section in C0: The mechanical boundary conditions are

t0 ¼ 
B0; m0 ¼ 
C0 at x ¼ 0; ‘ (2)

where the prime indicates differentiation with respect to x; b0 is the vector of the body forces per
unit undeformed reference length, B0 and C0 denote the boundary forces and couples,
respectively; the minus sign corresponds to x ¼ 0 and the plus sign to x ¼ ‘:
Fig. 1. Schematic geometry of the simply supported buckled beam.
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Accounting for Eq. (1), the balance equations in the dynamic configuration C are

t0 þ b ¼ 0; (3)

m0 þ x0 	 tþ u0 	 t0 ¼ 0 (4)

and

t ¼ 
B; m ¼ 
C at x ¼ 0; l; (5)

where x is the position vector of the beam section in C, t and m are the incremental resultant
contact force and couple, b represents the body forces per unit reference length (here inertial
forces only). Neglecting the rotary inertia, the scalar equations of motion governing free planar
vibrations of pre-stressed curved beams become

N 0 � y00T � rA €u ¼ 0; (6)

T 0 þ y00N � rA€v ¼ 0; (7)

M 0 þ T � N0y ¼ 0; (8)

where N and T represent the incremental axial and shear forces, and M is the incremental bending
moment; y ¼ ðv0 þ y00uÞ is the incremental dynamic section rotation; r is the mass density and A
the area of cross section; the dot denotes differentiation with respect to time t. At the same time,
y0 is the beam section rotation from Cn to C0; hence k0 ¼ y00 denotes the bending curvature in the
initial pre-stressed configuration C0 and N0 indicates the axial force (i.e., pre-stress). Considering
the simply supported beam acted upon by an end longitudinal load P0; accounting for Eq. (1) and
N0 ¼ �P0 cos y0; the following nonlinear boundary-value problem is obtained in the unknown
rotation y0:

EJy000 þ P0 sin y0 ¼ 0; (9)

along with the boundary conditions EJy00 ¼ 0 at x ¼ 0 and x ¼ ‘ representing the moment-free
end supports. Eq. (9) represents the well-known elastica problem [26] which holds for more
general boundary conditions. Typically, in this equation the arch-length along the deformed beam
centerline is taken as independent space variable. However, as shown also in Ref. [27] when the
beam is inextensible, it is immaterial to use the arch-length or the x coordinate along the centerline
of the undeformed beam.

In Eq. (9), the linear constitutive law, M0 ¼ EJk0; relating the bending moment to the bending
curvature k0 was used, whereby E is Young’s modulus, J is the moment of inertia of the
undeformed cross section. The solutions of the elastica problem can be expressed using elliptic
integrals [15,26]. On the other hand, making use of a perturbation method, an asymptotic
expression of the fundamental post-buckling solution was found in Ref. [20] in the form, up to
fifth order,

y0ðxÞ ¼ ŷ0 cosðpxÞ �
ŷ

3

0

192
cosð3pxÞ �

ŷ
5

0

20;480
½�5 cosð3pxÞ þ cosð5pxÞ� (10)
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along with the expansion of the end load P0 expressed as

P0l2

EJ
¼ p2 þ

p2

8
ŷ

2

0 þ
5p2

512
ŷ

4

0 þ � � � ;

where ŷ0 is a small parameter, indicating the rotation of the end sections to first order.
In Eqs. (6)–(8), the shear force is treated as a reaction force, since the considered beams are

unshearable and is filtered out of the balance equations. The result is

rA €u � N 0 � y00M 0 þ N0y
0
0y ¼ 0;

rA€v þ M 00 � y00N � N0k� N 0
0y ¼ 0: ð11Þ

The beam linearized strain measures, the axial strain and the bending curvature, are expressed in
terms of the kinematic variables ðu; vÞ as

e ¼ u0 � y00v; k ¼ v00 þ y000u þ y00u0: (12)

The dynamic incremental axial force and bending moment are related to the dynamic axial strain
and bending curvature by the following linear constitutive laws:

N ¼ EAe; M ¼ EJk:

In the next sections, the two post-buckling static configurations are separately discussed; namely,
the simply supported and hinged–hinged cases.

2.1. The simply supported case

Considering the beam in Fig. 1, the kinematical and mechanical boundary conditions assume,
respectively, the forms

u ¼ 0 and v ¼ 0 at x ¼ 0;

u sin y0 þ v cos y0 ¼ 0 at x ¼ ‘; ð13Þ

M ¼ 0 at x ¼ 0;

M ¼ 0 and N cos y0 � T sin y0 ¼ �mð €u cos y0 � €v sin y0Þ at x ¼ ‘: ð14Þ

The last boundary condition in Eq. (14) is obtained from the balance equation t � e1 ¼ B � e1;
where t is the internal contact force and B ¼ �m€u at x ¼ ‘: Here m (see Fig. 1) indicates the
boundary lumped mass element, where the physical actuator force P0 is applied. Due to
Kirchhoff’s hypotheses, the longitudinal displacement u and the dynamic bending curvature k can
be expressed as functions of the transverse displacement v only in the form

u ¼

Z x

0

y00v dZ; k ¼ v00 þ y000

Z x

0

y00v dZþ y
02
0 v; (15)

where use of Eq. ð131Þ has been made.
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Since the reactive axial force N is known at x ¼ ‘; it can be obtained integrating Eq. (6). In fact,
using Eq. ð142Þ and introducing the shear force T from Eq. (8) yields

N ¼ NðlÞ �

Z l

x

N0y
0
0v0 dZ�

Z l

x

N0y
02
0

Z Z

0

y00v dx
� �

dZ

þ

Z l

x

y00M 0 dZ�
Z l

x

rA

Z Z

0

y00 €v dx
� �

dZ; ð16Þ

where

NðlÞ ¼ N0ðlÞv
0ðlÞ tan y0ðlÞ � M 0ðlÞ tan y0ðlÞ � m

Z l

0

y00 €v dx þ m€vðlÞ tan y0ðlÞ: (17)

As a consequence of the internal kinematic constraints, the only internal active force is the
bending moment, M, and the balance equations (6)–(8) can be reduced to one equation only in the
transverse unknown displacement v. Using the mentioned constitutive laws, the dimensional
equation of motion governing transverse vibrations can be written as

rA€v þ y00

Z l

x

rA

Z Z

0

y00 €v dx
� �

dZþ my00

Z l

0

y00 €v dx � my00 €vðlÞ tan y0ðlÞ

þ EJ v0000 þ y00000

Z x

0

y00v dZþ 4y00y
000
0 v þ 3y0020 v þ 5y00y

00
0v0 þ y020 v00

� �

þ EJy00 tan y0ðlÞ v000ðlÞ þ y0000 ðlÞ
Z l

0

y00v dx

� �

� y00

Z l

x

y00EJ v000 þ y0000

Z Z

0

y00v dxþ 3y00y
00
0v þ y020 v0

� �
dZ

þ P0 y00v0ðlÞ sin y0ðlÞ � y00

Z l

x

y00 cos y0v0 dx � y00

Z l

x

y020 cos y0

Z Z

0

y00v dx
� �

dZ
�

� y00 sin y0 v0 þ y00

Z x

0

y00v dZ
� �

þ cos y0 v00 þ y000

Z x

0

y00v dZþ y020 v

� ��
¼ 0: ð18Þ

A non-dimensional form of Eq. (18) can be obtained introducing the following variables:

t ¼ oct; x ¼
x

‘
; v ¼

v

l
; P

0 ¼
P0‘

2

EJ
; m ¼

m

rA‘
; (19)

where oc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEJÞ=ðrA‘4Þ

q
:

Then, Eq. (18) can be cast in compact form as

Ið€vÞ þLEðvÞ þ P0LGðvÞ ¼ 0; (20)

where the inertial ðIÞ; elastic ðLEÞ and geometric ðLGÞ stiffness operators take the following
forms:

I ¼ €vðx; tÞ þ y00

Z 1

x

Z Z

0

€vðx; tÞy00 dx
� �

dZ� 2my00
€vð1; tÞ

sin 2y0ð1Þ
; (21)
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LE ¼ v0000 þ y00000

Z x

0

y00v dZþ 4y00y
000
0 v þ 3y0020 v þ 5y00y

00
0v0 þ y020 v00 þ y00 tan y0ð1Þ

	 v000ð1; tÞ þ y0000 ð1Þ
Z 1

0

y00v dx

� �
� y00

Z 1

x

y00 v000 þ y0000

Z Z

0

y00v dxþ 3y00y
00
0v þ y020 v0

� �
dZ; ð22Þ

LG ¼ y00v0ð1; tÞ sin y0ð1Þ � y00

Z 1

x

y00 cos y0v0 dZ� y00

Z 1

x

y020 cos y0

Z Z

0

y00v dx
� �

dZ

� y00 sin y0 v0 þ y00

Z x

0

y00v dZ
� �

þ cos y0 v00 þ y000

Z x

0

y00v dZþ y020 v

� �
: ð23Þ

In Eqs. (20)–(23), the prime and dot denote differentiation with respect to the non-dimensional
coordinate x and non-dimensional time t: However, the star has been omitted for ease of
notation. The PDE boundary-value problem (20) is supplemented with the following geometric
and mechanical boundary conditions:

v ¼ 0 at x ¼ 0;Z 1

0

y00v dx sin y0 þ v cos y0 ¼ 0 at x ¼ 1 ð24Þ

and

v00 ¼ 0 at x ¼ 0

v00 þ y000

Z 1

0

y00v dx ¼ 0 at x ¼ 1; ð25Þ

The eigenvalue problem (20), (24), (25) is solved assuming, first, separable solutions, i.e. vðx; tÞ ¼
V ðxÞeiot and, secondly, putting

V ðxÞ �
XM

k¼1

X k½sinðkpxÞ þ ykðxÞ�; (26)

where

ykðxÞ ¼ C1k �
C2k

6

� �
x þ

C2k

6
x3 (27)

is determined such that V ðxÞ satisfies all of the boundary conditions. The derivation of yk and the
coefficients C1k and C2k are given in Appendix A.

The approximate solution (26) is introduced into the inertial and stiffness operators (21), (22)
and (23) and the Galerkin method [25] is applied to Eq. (20), using the following trial functions as
weighting functions:

f 
j ðxÞ ¼ sinðjpxÞ þ yjðxÞ: (28)

Thus, a set of M equations in the unknown X k is obtained. The discretized forms of the inertial
and stiffness operators are reported in Appendix A.
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2.2. The hinged–hinged case

Due to the stationary hinges in the post-buckling phase (Fig. 2), the beam cannot be considered
inextensible; therefore, two coupled equations of motion govern the equilibrium in the axial and
transverse directions. They are formally identical to Eq. (20), where the inertial and stiffness
operators become

I ¼
€u

€v

	 

; (29)

LE ¼
�l2

ðu00 � y000v � y00v0Þ � y00ðv
000 þ y0000 u þ 2y000u0 þ y00u00Þ

v0000 þ y00000 u þ 3y0000 u0 þ 3y000u00 þ y00u000 � l2y00ðu
0 � y00vÞ

( )
; (30)

LG ¼
�y00 cos y0ðv

0 þ y00uÞ

cos y0ðv
00 þ y000u þ y00u0Þ � sin y0y

0
0ðv

0 þ y00uÞ

	 

(31)

and the beam slenderness ðl:¼‘=
ffiffiffiffiffiffiffiffiffi
J=A

p
Þ is introduced. The previous PDE boundary-value

problem is completely defined with the following geometric and mechanical boundary conditions:

u ¼ 0; v ¼ 0 at x ¼ 0;

u ¼ 0; v ¼ 0 at x ¼ 1;

v00 ¼ 0 at x ¼ 0 and 1: ð32Þ

To formulate the eigenvalue problem, the two separable solutions uðx; tÞ ¼ UðxÞeiot and vðx; tÞ ¼
V ðxÞeiot are introduced in Eq. (20), where the unknown mode shape functions UðxÞ and V ðxÞ are
both assumed as

UðxÞ

VðxÞ

	 

�

XM

k¼1

X k

Y k

	 

sinðkpxÞ: (33)

The adopted trial sine functions are admissible, as they satisfy all of the boundary conditions. By
introducing these expressions into the operators (29), (30) and (31) and applying the Galerkin
procedure again, a set of 2M equations is obtained in the unknown coefficients X k and Y k: The
discrete Galerkin equations are reported in Appendix B.
Fig. 2. Schematic geometry of the buckled beam with the stationary hinge in the post-buckling phase.
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3. Numerical results and discussion

In this section, the main numerical results are discussed. First, the post-buckling solutions,
obtained with the finite element code FEAP [28] and the perturbation expansion [20], are
presented in Fig. 3 for a rectangular cross-section test beam with ‘ ¼ 450mm; wb ¼ 10mm;
tb ¼ 0:8mm; r ¼ 8890kg=m3; E ¼ 106GPa; where wb and tb denote the beam width and
thickness, respectively. Consequently, the considered beam is rather slender, since l ¼ 1948:6:
With the FEAP code, the beam is discretized using large displacement and large rotation two-
node frame elements for two-dimensional geometries, based on the exact kinematic formulation
of Simo and Vu-Quoc [29,30]. As to the nonlinear static analysis, a numerical step-by-step
technique is employed applying the external load in a sequence of discrete time intervals
characterized by a constant step. At each step, the solution is determined via a classical
Newton–Raphson algorithm. As to the free vibration analysis, the natural frequencies and the
associated mode shapes are evaluated by using the subspace iteration method.

To obtain the post-buckling solution, a very small initial imperfection is given, consisting of an
initially curved rest configuration, instead of a perfectly straight configuration, with a sag-to-span
ratio of about 10�6: As clear in Fig. 3, there is a close agreement between the semi-analytical and
numerical solutions, also for high loads up to two-and-a-half times the buckling load. Next, the
main results regarding the linear vibration analysis are presented for the simply supported beam,
when m ¼ 8:13: Twelve trial functions are used in the semi-analytical approach, whereas a
discretization with 100 elements is employed in the finite element computations for an overall
number of 300 degrees of freedom.

In Fig. 4, the lowest six natural non-dimensional frequencies are shown in the pre- and post-
buckling ranges. The dashed vertical line corresponds to the non-dimensional buckling load
ðP

0 ¼ p2Þ; whereby the frequency of the first mode vanishes (see also Fig. 5). Past the buckling
load, the first frequency mildly increases, whereas the frequencies of the other modes slowly
Fig. 3. Bifurcation diagram: variation of the deflection of the midspan section with the end load. The continuous

(dashed) line indicates the analytical (numerical) solution.
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Fig. 4. Variation of the lowest six non-dimensional natural frequencies with the end load for the simply supported

buckled beam.

Fig. 5. Variation of the lowest three natural frequencies of the test simply supported beam with the end load:

comparison between the analytical (continuous line) and numerical (dashed line) solutions.
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decrease due to the overall stiffness drop caused by the negative geometric stiffness. No crossovers
occur and the frequencies are well separated.

In Fig. 5, the lowest three-dimensional natural frequencies of the mentioned test beam can be
more closely observed. In the top figure, it is worth noting that the agreement between the results
obtained with the FEAP code and the Galerkin procedure for the first mode is very good up to
2.4 N (about 10% of the buckling load); thereafter, a deviation is observed due to the
approximation in the post-buckling analytical static solution (the rotation field y0 is truncated to
fifth order) and its consequences on the elastic and geometric stiffnesses. On the other hand, the
higher frequencies agree very well, as they are less sensitive to the initial post-buckling curvature
and pre-stress.

Further, it is interesting to note that the frequency of the first mode experiences a sharp growth
in a very narrow load range right above the buckling load, whereas, subsequently, it increases with
a much smaller rate. This is due to the fact that the growth of the beam stiffness from zero is very
high past the buckling condition. The agreement between the numerically obtained results and the
semi-analytical solutions is good also for the associated mode shapes calculated at the loads
marked by Ak; Bk; and Ck; for the lowest three modes in Fig. 5 and shown, for the lowest six
modes, in Fig. 6. It is worth observing that the first mode (first row in Fig. 6), as expected, entails a
visible motion of the sliding hinge, hence of the end mass, whereas the higher modes are not
affected by an appreciable motion of the boundary. Consequently, the first mode shape is not
symmetric, whereas the higher modes are close to being symmetric and antisymmetric. Slight
variations in the mode shapes are observed in the three pre-stressed conditions.

It is also interesting to investigate the dependence of the frequencies on the ratio between the
end mass and the beam mass. In Fig. 7, the ratio o=o0 is shown, where o indicates the non-
dimensional frequencies of the beam possessing the boundary mass and o0 denotes the
frequencies of the beam without the boundary mass. As expected, the frequency of the first mode
decreases significantly with increase in m; up to a 70% decrease, when m ¼ 10: On the other hand,
the frequencies of the higher modes are less sensitive to the boundary mass. To study in closer
detail the difference between the considered case of boundary mass ðm ¼ 8:13Þ and the case
without end mass ðm ¼ 0Þ; the non-dimensional frequency variation with the end load is computed
and is shown in Fig. 8. Of course, there is no dependence on the pre-buckling range where the
transverse bending modes of the straight beam are uncoupled from the axial modes, hence it does
not imply horizontal motion of the boundary mass. In the post-buckling range, there is an
increasing dependence with the end load. In particular, with an end load about 8% higher than
the buckling load, the frequencies of the first and second modes of the beam without end mass are,
respectively, 80% and 12% higher than the corresponding frequencies with the end mass.

Next, the results concerning the hinged–hinged buckled beam are shown and discussed. The
first mode is expected to be dominated by the stretching effect. Figs. 9 and 10 show the lowest
three and lowest five natural frequencies, respectively. In Fig. 9, the diamonds, stars and dots
represent the frequencies calculated with the FEAP code and they closely match those computed
with the semi-analytical method. The frequency of the first symmetric mode exhibits a sharp
increase in the selected load range, as more clearly seen in Fig. 10. This steep growth of the first
frequency is responsible for the observed four consecutive crossovers with the frequencies of the
first antisymmetric, second symmetric, second antisymmetric and third symmetric modes. In this
figure, A indicates antisymmetric mode shapes and S denotes symmetric mode shapes. These
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Fig. 6. Comparison between the analytical (continuous line) and numerical (dashed line) lowest six mode shapes at

three different values of the end load for the simply supported buckled beam.
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results agree with the results of Perkins [15], but for the first mode, which was not shown along
with the crossovers. The remarkable feature is that these crossovers are all packed in a very
narrow load range. Therefore, a very small load variation can cause sensibly different dynamic
behaviors within this region. As well known, these crossovers entail one-to-one auto-parametric
exchange of energy in the nonlinear vibration regime. In Fig. 9, two distinct crossovers are clearly
discernible and are separated by an infinitesimal load increase (note the load scale in Fig. 9).
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Fig. 7. Variation of the non-dimensional three lowest natural frequencies with the end mass in the case of sliding hinge

post-buckling configuration.

Fig. 8. Variation of the first and second natural frequencies with the end load with and without the end mass in the case

of sliding hinge post-buckling configuration.
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The finite element and the Galerkin solutions are in very good agreement also for the lowest six
mode shapes calculated at the loads marked by Ak; Bk; and Ck; in Fig. 9 and shown in Fig. 11. We
note that, because of the full symmetry in the boundary conditions, the mode shapes are
symmetric and antisymmetric. The selected loads are located below the first crossover, between
the first and second crossovers, and above the second crossover, respectively. Below the first
crossover, the first mode is the symmetric stretching–bending mode, between the first and second
crossovers, the lowest mode is the first antisymmetric bending mode, whereas the second mode is
the symmetric stretching–bending mode. Above the second crossover, the lowest mode is still the
first antisymmetric bending mode, whereas the second mode is the second symmetric bending
mode (two nodes) and the third mode is the symmetric stretching–bending mode.
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Fig. 9. Variation of the lowest three natural frequencies with the end load for the hinged–hinged configuration:

comparison between the analytical (continuous line) and numerical (symbols) solutions.

Fig. 10. Variation of the lowest five non-dimensional natural frequencies with the end load for the hinged–hinged post-

buckled beam.
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It is useful to compare the lowest two frequencies of the simply supported and hinged–hinged
beams to show the influence of the different deformation mechanisms on the linear vibration
response. Namely, in the second case, the dynamic stretching-induced stiffness overpowers the
elastic bending stiffness and causes a sharp increase of the fundamental frequency associated with
a symmetric shape. In the simply supported case, this mechanism is not activated and the stiffness
is primarily due to the bending deformation process. The variation of the frequencies in Fig. 12
clearly shows this mechanical behavior.

The strong variation of the frequency of the stretching–bending mode with the load deserves
some further comments. Looking closely at the balance equation in the transverse direction,
Eq. (112), we note that the load-carrying mechanisms are related to the bending process, expressed
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Fig. 11. Comparison between the analytically obtained (continuous line) and the numerically obtained (dashed line)

first six mode shapes at three different values of the end load for the hinged–hinged beam.
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by M 00; and to the stretching mechanism (also known as funicular load-carrying mechanism),
expressed by the term �k0N: The other forces appearing in the balance equations, �ðN0kþ N 0

0yÞ;
are due to the pre-stress and act as de-stabilizing forces. The overall restoring forces, besides
that due to bending, are the summation of the stretching forces and the de-stabilizing forces
arising from the pre-stress. The stretching load-carrying effect depends quadratically on
the initial curvature, because the stretching axial force depends on the initial curvature (see the
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Fig. 12. The lowest two frequencies of the simply supported (thin line) and hinged–hinged (thick line) buckled beams.

Fig. 13. Variation of the different load-carrying forces along the beam axis for the end load level corresponding to Ak

in Fig. 9.
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definition of �) and is multiplied by the initial curvature itself. Overall, the dependence of the
frequency of the stretching–bending mode with the load is at least quadratic. To outline the
relative importance of the bending and stretching effects, Figs. 13 and 14 show variations of these
terms with x when the end load level is at Ak and Bk; respectively (see Fig. 9). Clearly, the mode
right above buckling and below the first crossover is a stretching–bending mode, as the load-
carrying terms are of the same orders. On the other hand, past the first crossover, the mode
becomes a truly stretching mode, as the overall stretching restoring forces are three orders of
magnitude greater than the bending force.

It is also worth investigating the dependence of the frequencies on the beam slenderness. A
beam about two orders of magnitude less slender is considered, namely with l ¼ 31:62; and the
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Fig. 14. Variation of the different load-carrying forces along the beam axis for the end load level corresponding to Bk in

Fig. 9.

Fig. 15. Variation of the lowest natural frequencies with the end load in the case of hinged–hinged post-buckling

configuration for l ¼ 31:62:
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variation of the lowest six frequencies with the end load is shown in Fig. 15. In this case, the
bending load-carrying capability is not overpowered by the funicular load-carrying capability.
Hence, the increase in the frequency of the first mode with the load is milder than in the case of the
more slender beam. In the same load range, the frequency of the first mode of the beam with
l ¼ 31:62 experiences only one crossover with the frequency of the first antisymmetric mode. In
order to confirm this, the switch between the mode shapes of the lowest two modes at the
crossover is shown in Fig. 16.
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Fig. 16. Zoom on the first and second natural frequencies with the end load in the case of hinged–hinged post-buckling

configuration for l ¼ 31:62 and the associated mode shapes.
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4. Conclusions

In this paper, the leading features of the unforced undamped linear vibrations of buckled beams
are computed and discussed, investigating the dependence of the natural frequencies and mode
shapes on the end load (i.e., the pre-stress level). The solutions obtained with a Galerkin
formulation, using appropriate admissible functions and an asymptotic expansion of the post-
buckling solution, have been compared with a finite-element formulation. In general, it was found
that the finite-element implementation required a rather fine mesh to match closely the result
obtained with the Galerkin formulation.

Distinguished differences have been found between the linear dynamic behavior of the simply
supported inextensible beam and that of the hinged–hinged beam (in the post-buckling), whereby
the beam undergoes stretching and bending deformation modes. Specifically, in the first case, the
modes are bending modes and their frequencies are well separated, whereas, in the second case,
the first mode is primarily a stretching mode and its frequency undergoes crossovers with those of
the other modes with unappreciable load increases. This sharp difference in the linear vibration
signatures of the two differently constrained beams is expected to become more dramatic in the
nonlinear range, where the second system may experience coupled stretching–bending mode
interaction at the crossovers.
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Appendix A. Simply supported beam

The function ykðxÞ must satisfy the following boundary conditions:
at x ¼ 0:

XM

k¼1

X kykðxÞ ¼ 0;
XM

k¼1

X ky00
kðxÞ ¼ 0:

at x ¼ 1:

XM

k¼1

X k ykðxÞ þ tan y0

Z x

0

y00ðsinðkpxÞ þ ykðxÞÞdx

� �	 

¼ C1;k;

XM

k¼1

X k y00kðxÞ þ tan y000

Z x

0

y00ðsinðkpxÞ þ ykðxÞÞdx

� �	 

¼ C2;k:

The function ykðxÞ may be expressed by a third-order polynomial. By letting

ykðxÞ ¼ a0;k þ a1;kx þ a2;kx2 þ a3;kx3;

the first two boundary conditions at x ¼ 0 lead to

a0;k ¼ 0; a1;k ¼ C1;k �
1
6

C2;k; a2;k ¼ 0; a3;k ¼ 1
6

C2;k

and

ykðxÞ ¼ C1;k �
C2;k

6

� �
x þ

C2;k

6
x3:

By substituting the expression of ykðxÞ into the last two boundary conditions at x ¼ 1;
the constants Ci;k are determined as the solution of the resulting set of equations in the
form

C1k ¼
ŷ0p
D

�432;000 tan ŷ0 �
1

192
ŷ

3

0 þ
1

5120
ŷ

5

0

� �n
	 4096d1k þ ð3ŷ

4

0 � 64ŷ
2

0Þd3k � ŷ
4

0d5k

h i

;

C2k ¼
1

8D
3375ŷ

2

0p
3ð1024 � 48ŷ

2

0 þ ŷ
4

0Þ

n
	 4096d1k þ ð3ŷ

4

0 � 64ŷ
2

0Þd3k � ŷ
4

0d5k

h io
;
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where dij is the Kronecker delta and

D ¼ 3538;944; 000ð1 þ ŷ
2

0Þ � 167;936; 000ŷ
4

0 þ 3641;088ŷ
6

0 � 6176ŷ
8

0

þ 87ŷ
10

0 þ 230;400ŷ0ð15;360 � 80ŷ
2

0 þ 3ŷ
4

0Þ tan ŷ0 �
1

192
ŷ

3

0 þ
1

5120
ŷ

5

0

� �
:

The discretized expressions of the inertial and stiffness operators are

Ij ¼
XM

k¼1

X k �Bjk � Cjk þ
2m

sin 2y0ð1Þ
Djk

� �
;

LEj ¼
XM

k¼1

X kðEjk þ Fjk þ Gjk þ Hjk þ I jk þ Jjk

þ Ljk þ Njk � Ojk � Pjk � Qjk � RjkÞ;

LGj ¼
XM

k¼1

X kðSjk � Tjk � Ujk � Vjk � W jk þ X jk þ Y jk þ ZjkÞ;

Bjk ¼
R 1

0 f 
j f k dx; Cjk ¼

R 1

0 f 
j y

0
0

R 1

x

R Z
0 y00 f k dx

� �
dZ

h i
dx;

Djk ¼
R 1

0 f 
j y

0
0

R 1

0 y00 f k dx
� �

dx; Ejk ¼
R 1

0 f 
j f 0000

k dx;

Fjk ¼
R 1

0 f 
j y

0000
0

R x

0 y00 f k dZ
� �

dx; Gjk ¼
R 1

0 f 
j 4y

0
0y

000
0 f k dx;

Hjk ¼
R 1

0 f 
j 3y

002
0 f k dx; I jk ¼

R 1

0 f 
j 5y

0
0y

00
0 f 0

k dx;

Jjk ¼
R 1

0 f 
j y

02
0 f 00

k dx; Ljk ¼
R 1

0 f 
j y

0
0 tan y0ð1Þf

000
k ð1Þdx;

Njk ¼
R 1

0 f 
j y

0
0 tan y0ð1Þy

000
0 ð1Þ

R 1

0 y00f k dx
� �

dx; Ojk ¼
R 1

0 f 
j y

0
0

R 1

x
y00f 000

k dZ
� �

dx;

Pjk ¼
R 1

0 f 
j y

0
0

R 1

x
y00y

000
0

R Z
0 y00 f k dx

� �
dZ

h i
dx; Qjk ¼

R 1

0 f 
j y

0
0

R 1

x
3y020 y

00
0 f k dZ

� �
dx;

Rjk ¼
R 1

0 f 
j y

0
0

R 1

x
y030 f 0

k dZ
� �

dx; Sjk ¼
R 1

0 f 
j y

0
0 f 0

kð1Þ sin y0ð1Þdx;

Tjk ¼
R 1

0 f 
j y

0
0

R 1

x
y00 cos y0 f 0

k dZ
� �

dx; Ujk ¼
R 1

0 f 
j y

0
0

R 1

x
y020 cos y0

R Z
0 y00 f k dx

� �
dZ

h i
dx;

Vjk ¼
R 1

0 f 
j y

0
0 sin y0 f 0

k dx; W jk ¼
R 1

0 f 
j ðy

0
0Þ

2 sin y0

R x

0 y00 f k dZ
� �

dx;

X jk ¼
R 1

0 f 
j cos y0 f 00

k dx; Y jk ¼
R 1

0 f 
j cos y0y

00
0

R x

0 y00 f k dZ
� �

dx;

Zjk ¼
R 1

0 f 
j cos y0y

02
0 f k dx;
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having denoted with f kðxÞ the expression

f xðxÞ ¼ f 
kðxÞ ¼ sinðkpxÞ þ ykðxÞ:
Appendix B. Hinged–hinged beam

The discretized expressions of the inertial and stiffness operators are

Ij ¼ �
XM

k¼1

X k

Y k

	 

Cjk;

LEj ¼

PM
k¼1

½X kð�l2Djk � Ejk � Fjk � 2GjkÞ þ Y kðl
2Hjk þ l2I jk � JjkÞ�;

PM
k¼1

½X kð�l2I jk þ Jjk þ Ljk þ 3Njk þ 3OjkÞ þ Y kðPjk þ l2QjkÞ�;

8>>><
>>>:

LGj ¼

PM
k¼1

½X kð�RjkÞ þ Y kð�SjkÞ�;

PM
k¼1

½X kðSjk þ Tjk � UjkÞ þ Y kðVjk � W jkÞ�;

8>>><
>>>:

where

Cjk ¼
R 1

0 f 
j f k dx; Djk ¼

R 1

0 f 
j f 00

k dx; Ejk ¼
R 1

0 f 
j ðy

0
0Þ

2 f 00
k dx;

Fjk ¼
R 1

0 f 
j y

0
0y

000
0 f k dx; Gjk ¼

R 1

0 f 
j y

0
0y

00
0 f 0

k dx; Hjk ¼
R 1

0 f 
j y

00
0 f k dx;

I jk ¼
R 1

0 f 
j y

0
0 f 0

k dx; Jjk ¼
R 1

0 f 
j y

0
0 f 000

k dx; Ljk ¼
R 1

0 f 
j y

0000
0 f k dx;

Njk ¼
R 1

0 f 
j y

000
0 f 0

k dx; Ojk ¼
R 1

0 f 
j y

00
0 f 00

k dx; Pjk ¼
R 1

0 f 
j f 0000

k dx;

Qjk ¼
R 1

0 f 
j ðy

0
0Þ

2 f k dx; Rjk ¼
R 1

0 f 
j cos y0y

02
0 f k dx; Sjk ¼

R 1

0 f 
j cos y0y

0
0 f 0

k dx;

Tjk ¼
R 1

0 f 
j cos y0y

00
0 f k dx; Ujk ¼

R 1

0 f 
j sin y0y

02
0 f k dx; Vjk ¼

R 1

0 f 
j cos y0 f 00

k dx;

W jk ¼
R 1

0 f 
j sin y0y

0
0 f 0

k dx;

having denoted with f kðxÞ the expression

f kðxÞ ¼ f 
kðxÞ ¼ sinðkpxÞ:
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